revise easing
This commit is contained in:
parent
42aeb296a9
commit
df950a1139
@ -1,172 +1,307 @@
|
||||
#include <math.h>
|
||||
#include "utils/Easing.hpp"
|
||||
#include <cmath>
|
||||
|
||||
namespace cur = easing;
|
||||
|
||||
#ifndef PI
|
||||
#define PI 3.1415926545
|
||||
#endif
|
||||
|
||||
double cur::inSine(double t) {
|
||||
return sin(1.5707963 * t);
|
||||
}
|
||||
|
||||
double cur::outSine(double t) {
|
||||
return 1 + sin(1.5707963 * (--t));
|
||||
}
|
||||
|
||||
double cur::inOutSine(double t) {
|
||||
return 0.5 * (1 + sin(3.1415926 * (t - 0.5)));
|
||||
}
|
||||
|
||||
double cur::inQuad(double t) {
|
||||
return t * t;
|
||||
}
|
||||
|
||||
double cur::outQuad(double t) {
|
||||
return t * (2 - t);
|
||||
}
|
||||
|
||||
double cur::inOutQuad(double t) {
|
||||
return t < 0.5 ? 2 * t * t : t * (4 - 2 * t) - 1;
|
||||
}
|
||||
|
||||
double cur::inCubic(double t) {
|
||||
return t * t * t;
|
||||
}
|
||||
|
||||
double cur::outCubic(double t) {
|
||||
return 1 + (--t) * t * t;
|
||||
}
|
||||
|
||||
double cur::inOutCubic(double t) {
|
||||
return t < 0.5 ? 4 * t * t * t : 1 + (--t) * (2 * (--t)) * (2 * t);
|
||||
}
|
||||
|
||||
double cur::inQuart(double t) {
|
||||
t *= t;
|
||||
return t * t;
|
||||
}
|
||||
|
||||
double cur::outQuart(double t) {
|
||||
t = (--t) * t;
|
||||
return 1 - t * t;
|
||||
}
|
||||
|
||||
double cur::inOutQuart(double t) {
|
||||
if(t < 0.5) {
|
||||
t *= t;
|
||||
return 8 * t * t;
|
||||
} else {
|
||||
t = (--t) * t;
|
||||
return 1 - 8 * t * t;
|
||||
namespace easing {
|
||||
// Modeled after the line y = x
|
||||
EASING_TYPE LinearInterpolation(EASING_TYPE p)
|
||||
{
|
||||
return p;
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inQuint(double t) {
|
||||
auto t2 = t * t;
|
||||
return t * t2 * t2;
|
||||
}
|
||||
|
||||
double cur::outQuint(double t) {
|
||||
auto t2 = (--t) * t;
|
||||
return 1 + t * t2 * t2;
|
||||
}
|
||||
|
||||
double cur::inOutQuint(double t) {
|
||||
auto t2 = double { 0.0 };
|
||||
if(t < 0.5) {
|
||||
t2 = t * t;
|
||||
return 16 * t * t2 * t2;
|
||||
} else {
|
||||
t2 = (--t) * t;
|
||||
return 1 + 16 * t * t2 * t2;
|
||||
// Modeled after the parabola y = x^2
|
||||
EASING_TYPE QuadraticEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return p * p;
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inExpo(double t) {
|
||||
return (pow(2, 8 * t) - 1) / 255;
|
||||
}
|
||||
|
||||
double cur::outExpo(double t) {
|
||||
return 1 - pow(2, -8 * t);
|
||||
}
|
||||
|
||||
double cur::inOutExpo(double t) {
|
||||
if(t < 0.5) {
|
||||
return (pow(2, 16 * t) - 1) / 510;
|
||||
} else {
|
||||
return 1 - 0.5 * pow(2, -16 * (t - 0.5));
|
||||
// Modeled after the parabola y = -x^2 + 2x
|
||||
EASING_TYPE QuadraticEaseOut(EASING_TYPE p)
|
||||
{
|
||||
return -(p * (p - 2));
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inCirc(double t) {
|
||||
return 1 - sqrt(1 - t);
|
||||
}
|
||||
|
||||
double cur::outCirc(double t) {
|
||||
return sqrt(t);
|
||||
}
|
||||
|
||||
double cur::inOutCirc(double t) {
|
||||
if(t < 0.5) {
|
||||
return (1 - sqrt(1 - 2 * t)) * 0.5;
|
||||
} else {
|
||||
return (1 + sqrt(2 * t - 1)) * 0.5;
|
||||
// Modeled after the piecewise quadratic
|
||||
// y = (1/2)((2x)^2) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
|
||||
EASING_TYPE QuadraticEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 2 * p * p;
|
||||
}
|
||||
else
|
||||
{
|
||||
return (-2 * p * p) + (4 * p) - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inBack(double t) {
|
||||
return t * t * (2.70158 * t - 1.70158);
|
||||
}
|
||||
|
||||
double cur::outBack(double t) {
|
||||
return 1 + (--t) * t * (2.70158 * t + 1.70158);
|
||||
}
|
||||
|
||||
double cur::inOutBack(double t) {
|
||||
if(t < 0.5) {
|
||||
return t * t * (7 * t - 2.5) * 2;
|
||||
} else {
|
||||
return 1 + (--t) * t * 2 * (7 * t + 2.5);
|
||||
// Modeled after the cubic y = x^3
|
||||
EASING_TYPE CubicEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return p * p * p;
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inElastic(double t) {
|
||||
auto t2 = t * t;
|
||||
return t2 * t2 * sin(t * PI * 4.5);
|
||||
}
|
||||
|
||||
double cur::outElastic(double t) {
|
||||
auto t2 = (t - 1) * (t - 1);
|
||||
return 1 - t2 * t2 * cos(t * PI * 4.5);
|
||||
}
|
||||
|
||||
double cur::inOutElastic(double t) {
|
||||
auto t2 = double { 0.0 };
|
||||
if(t < 0.45) {
|
||||
t2 = t * t;
|
||||
return 8 * t2 * t2 * sin(t * PI * 9);
|
||||
} else if(t < 0.55) {
|
||||
return 0.5 + 0.75 * sin(t * PI * 4);
|
||||
} else {
|
||||
t2 = (t - 1) * (t - 1);
|
||||
return 1 - 8 * t2 * t2 * sin(t * PI * 9);
|
||||
// Modeled after the cubic y = (x - 1)^3 + 1
|
||||
EASING_TYPE CubicEaseOut(EASING_TYPE p)
|
||||
{
|
||||
EASING_TYPE f = (p - 1);
|
||||
return f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
double cur::inBounce(double t) {
|
||||
return pow(2, 6 * (t - 1)) * abs(sin(t * PI * 3.5));
|
||||
}
|
||||
// Modeled after the piecewise cubic
|
||||
// y = (1/2)((2x)^3) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
|
||||
EASING_TYPE CubicEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 4 * p * p * p;
|
||||
}
|
||||
else
|
||||
{
|
||||
EASING_TYPE f = ((2 * p) - 2);
|
||||
return 0.5 * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
double cur::outBounce(double t) {
|
||||
return 1 - pow(2, -6 * t) * abs(cos(t * PI * 3.5));
|
||||
}
|
||||
// Modeled after the quartic x^4
|
||||
EASING_TYPE QuarticEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return p * p * p * p;
|
||||
}
|
||||
|
||||
double cur::inOutBounce(double t) {
|
||||
if(t < 0.5) {
|
||||
return 8 * pow(2, 8 * (t - 1)) * abs(sin(t * PI * 7));
|
||||
} else {
|
||||
return 1 - 8 * pow(2, -8 * t) * abs(sin(t * PI * 7));
|
||||
// Modeled after the quartic y = 1 - (x - 1)^4
|
||||
EASING_TYPE QuarticEaseOut(EASING_TYPE p)
|
||||
{
|
||||
EASING_TYPE f = (p - 1);
|
||||
return f * f * f * (1 - p) + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quartic
|
||||
// y = (1/2)((2x)^4) ; [0, 0.5)
|
||||
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
|
||||
EASING_TYPE QuarticEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 8 * p * p * p * p;
|
||||
}
|
||||
else
|
||||
{
|
||||
EASING_TYPE f = (p - 1);
|
||||
return -8 * f * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the quintic y = x^5
|
||||
EASING_TYPE QuinticEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return p * p * p * p * p;
|
||||
}
|
||||
|
||||
// Modeled after the quintic y = (x - 1)^5 + 1
|
||||
EASING_TYPE QuinticEaseOut(EASING_TYPE p)
|
||||
{
|
||||
EASING_TYPE f = (p - 1);
|
||||
return f * f * f * f * f + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise quintic
|
||||
// y = (1/2)((2x)^5) ; [0, 0.5)
|
||||
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
|
||||
EASING_TYPE QuinticEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 16 * p * p * p * p * p;
|
||||
}
|
||||
else
|
||||
{
|
||||
EASING_TYPE f = ((2 * p) - 2);
|
||||
return 0.5 * f * f * f * f * f + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave
|
||||
EASING_TYPE SineEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return sin((p - 1) * M_PI_2) + 1;
|
||||
}
|
||||
|
||||
// Modeled after quarter-cycle of sine wave (different phase)
|
||||
EASING_TYPE SineEaseOut(EASING_TYPE p)
|
||||
{
|
||||
return sin(p * M_PI_2);
|
||||
}
|
||||
|
||||
// Modeled after half sine wave
|
||||
EASING_TYPE SineEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
return 0.5 * (1 - cos(p * M_PI));
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant IV of unit circle
|
||||
EASING_TYPE CircularEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return 1 - sqrt(1 - (p * p));
|
||||
}
|
||||
|
||||
// Modeled after shifted quadrant II of unit circle
|
||||
EASING_TYPE CircularEaseOut(EASING_TYPE p)
|
||||
{
|
||||
return sqrt((2 - p) * p);
|
||||
}
|
||||
|
||||
// Modeled after the piecewise circular function
|
||||
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
|
||||
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
|
||||
EASING_TYPE CircularEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 0.5 * (1 - sqrt(1 - 4 * (p * p)));
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = 2^(10(x - 1))
|
||||
EASING_TYPE ExponentialEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return (p == 0.0) ? p : pow(2, 10 * (p - 1));
|
||||
}
|
||||
|
||||
// Modeled after the exponential function y = -2^(-10x) + 1
|
||||
EASING_TYPE ExponentialEaseOut(EASING_TYPE p)
|
||||
{
|
||||
return (p == 1.0) ? p : 1 - pow(2, -10 * p);
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponential
|
||||
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
|
||||
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
|
||||
EASING_TYPE ExponentialEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p == 0.0 || p == 1.0) return p;
|
||||
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 0.5 * pow(2, (20 * p) - 10);
|
||||
}
|
||||
else
|
||||
{
|
||||
return -0.5 * pow(2, (-20 * p) + 10) + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
|
||||
EASING_TYPE ElasticEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1));
|
||||
}
|
||||
|
||||
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
|
||||
EASING_TYPE ElasticEaseOut(EASING_TYPE p)
|
||||
{
|
||||
return sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1;
|
||||
}
|
||||
|
||||
// Modeled after the piecewise exponentially-damped sine wave:
|
||||
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
|
||||
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
|
||||
EASING_TYPE ElasticEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1));
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0.5 * (sin(-13 * M_PI_2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2);
|
||||
}
|
||||
}
|
||||
|
||||
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
|
||||
EASING_TYPE BackEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return p * p * p - p * sin(p * M_PI);
|
||||
}
|
||||
|
||||
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
|
||||
EASING_TYPE BackEaseOut(EASING_TYPE p)
|
||||
{
|
||||
EASING_TYPE f = (1 - p);
|
||||
return 1 - (f * f * f - f * sin(f * M_PI));
|
||||
}
|
||||
|
||||
// Modeled after the piecewise overshooting cubic function:
|
||||
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
|
||||
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
|
||||
EASING_TYPE BackEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
EASING_TYPE f = 2 * p;
|
||||
return 0.5 * (f * f * f - f * sin(f * M_PI));
|
||||
}
|
||||
else
|
||||
{
|
||||
EASING_TYPE f = (1 - (2*p - 1));
|
||||
return 0.5 * (1 - (f * f * f - f * sin(f * M_PI))) + 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
EASING_TYPE BounceEaseIn(EASING_TYPE p)
|
||||
{
|
||||
return 1 - BounceEaseOut(1 - p);
|
||||
}
|
||||
|
||||
EASING_TYPE BounceEaseOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 4/11.0)
|
||||
{
|
||||
return (121 * p * p)/16.0;
|
||||
}
|
||||
else if(p < 8/11.0)
|
||||
{
|
||||
return (363/40.0 * p * p) - (99/10.0 * p) + 17/5.0;
|
||||
}
|
||||
else if(p < 9/10.0)
|
||||
{
|
||||
return (4356/361.0 * p * p) - (35442/1805.0 * p) + 16061/1805.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return (54/5.0 * p * p) - (513/25.0 * p) + 268/25.0;
|
||||
}
|
||||
}
|
||||
|
||||
EASING_TYPE BounceEaseInOut(EASING_TYPE p)
|
||||
{
|
||||
if(p < 0.5)
|
||||
{
|
||||
return 0.5 * BounceEaseIn(p*2);
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0.5 * BounceEaseOut(p * 2 - 1) + 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
EASING_TYPE BounceTwice(EASING_TYPE p)
|
||||
{
|
||||
EASING_TYPE cutoff1 = 4.0f/6.0f;
|
||||
|
||||
if(p < cutoff1)
|
||||
{
|
||||
return sinf(p/cutoff1*M_PI);
|
||||
}
|
||||
else
|
||||
{
|
||||
return (1.0 - cutoff1) * sinf((p-cutoff1)/(1.0f-cutoff1)*M_PI);
|
||||
}
|
||||
}
|
||||
}
|
@ -1,36 +1,63 @@
|
||||
#pragma once
|
||||
|
||||
#ifndef EASING_TYPE
|
||||
#define EASING_TYPE float
|
||||
#endif
|
||||
|
||||
namespace easing
|
||||
{
|
||||
double inSine(double time);
|
||||
double outSine(double time);
|
||||
double inOutSine(double time);
|
||||
double inQuad(double time);
|
||||
double outQuad(double time);
|
||||
double inOutQuad(double time);
|
||||
double inCubic(double time);
|
||||
double outCubic(double time);
|
||||
double inOutCubic(double time);
|
||||
double inQuart(double time);
|
||||
double outQuart(double time);
|
||||
double inOutQuart(double time);
|
||||
double inQuint(double time);
|
||||
double outQuint(double time);
|
||||
double inOutQuint(double time);
|
||||
double inExpo(double time);
|
||||
double outExpo(double time);
|
||||
double inOutExpo(double time);
|
||||
double inOutExpo(double time);
|
||||
double inCirc(double time);
|
||||
double outCirc(double time);
|
||||
double inOutCirc(double time);
|
||||
double inBack(double time);
|
||||
double outBack(double time);
|
||||
double inOutBack(double time);
|
||||
double inElastic(double time);
|
||||
double outElastic(double time);
|
||||
double inOutElastic(double time);
|
||||
double inBounce(double time);
|
||||
double outBounce(double time);
|
||||
double inOutBounce(double time);
|
||||
// Linear interpolation (no easing)
|
||||
EASING_TYPE LinearInterpolation(EASING_TYPE p);
|
||||
|
||||
// Quadratic easing; p^2
|
||||
EASING_TYPE QuadraticEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE QuadraticEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE QuadraticEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Cubic easing; p^3
|
||||
EASING_TYPE CubicEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE CubicEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE CubicEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Quartic easing; p^4
|
||||
EASING_TYPE QuarticEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE QuarticEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE QuarticEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Quintic easing; p^5
|
||||
EASING_TYPE QuinticEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE QuinticEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE QuinticEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Sine wave easing; sin(p * PI/2)
|
||||
EASING_TYPE SineEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE SineEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE SineEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Circular easing; sqrt(1 - p^2)
|
||||
EASING_TYPE CircularEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE CircularEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE CircularEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Exponential easing, base 2
|
||||
EASING_TYPE ExponentialEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE ExponentialEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE ExponentialEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Exponentially-damped sine wave easing
|
||||
EASING_TYPE ElasticEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE ElasticEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE ElasticEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Overshooting cubic easing;
|
||||
EASING_TYPE BackEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE BackEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE BackEaseInOut(EASING_TYPE p);
|
||||
|
||||
// Exponentially-decaying bounce easing
|
||||
EASING_TYPE BounceEaseIn(EASING_TYPE p);
|
||||
EASING_TYPE BounceEaseOut(EASING_TYPE p);
|
||||
EASING_TYPE BounceEaseInOut(EASING_TYPE p);
|
||||
|
||||
EASING_TYPE BounceTwice(EASING_TYPE p);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user